EE105 - Fall 2014
 Microelectronic Devices and Circuits

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

Lecture21-Multistage Amplifiers 1

BSAC

Terminal Gain and I/O Resistances of BJT Amplifiers

Common Emitter (CE)	Common Collector (CC)	Common Base (CB)
$\begin{aligned} & A_{V, t}=-\frac{g_{m} R_{L}}{1+g_{m} R_{E}} \\ & R_{i}=r_{\pi}+(\beta+1) R_{E} \\ & R_{o}=\left[r_{o}\left(1+g_{m} R_{E}\right)\right] \\ & A_{t, t}=\beta \end{aligned}$ Without degeneration: Simply set $R_{E}=0$	$\begin{aligned} & A_{V, t}=\frac{R_{L}}{\frac{1}{g_{m}}+R_{L}} \\ & R_{i}=r_{\pi}+(\beta+1) R_{L} \\ & R_{o}=\frac{r_{\pi}+R_{t h}}{1+\beta} \approx \frac{1}{g_{m}}+\frac{R_{t h}}{\beta} \\ & A_{l, t}=\beta+1 \end{aligned}$	$\begin{aligned} & A_{V, t}=g_{m} R_{L} \beta \\ & R_{i}=\frac{1}{g_{m}} \\ & R_{o}=\left[r_{o}\left(1+g_{m} R_{E}\right)\right] \\ & A_{l, t} \approx 1 \end{aligned}$

For the gain, $\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{o}}$ of the whole amplifier, you need to include voltage/ current dividers at input and output stages

Terminal Gain and I/O Resistances of MOS Amplifiers

Common Source (CS)	Common Drain (CD)	Common Gate (CG)
$\begin{aligned} & A_{V, t}=-\frac{g_{m} R_{L}}{1+g_{m} R_{S}} \\ & R_{i}=\infty \\ & R_{o}=\left[r_{o}\left(1+g_{m} R_{E}\right)\right] \\ & A_{t, t}=\infty \end{aligned}$ Without degeneration: Simply set $R_{S}=0$	$\begin{aligned} & A_{V, t}=\frac{R_{L}}{\frac{1}{g_{m}}+R_{L}} \\ & R_{i}=\infty \\ & R_{o}=\frac{1}{g_{m}} \\ & A_{I, t}=\infty \end{aligned}$	$\begin{aligned} & A_{V, t}=g_{m} R_{L} \\ & R_{i}=\frac{1}{g_{m}} \\ & R_{o}=\left[r_{o}\left(1+g_{m} R_{E}\right)\right] \\ & A_{I, t} \approx 1 \end{aligned}$

For the gain, $\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{o}}$ of the whole amplifier, you need to include voltage/ current dividers at input and output stages

Summary of Single-Transistor Amplifiers

BJT	Ideal Voltage Amplifiers	Common Emitter	Common Emitter with Deg.	Common Collector	Common Base
R_{i}	∞	Moderate	Large	Large	Small
R_{o}	0	Large	Very Large	Small	Large
A_{V}	∞	Large	Moderate	~ 1	Large
f_{H}	∞	Small	Moderate	Large	Large

MOS	Ideal Voltage Amplifiers	Common Source	Common Source with Deg.	Common Drain	Common Gate
R_{i}	∞	Very Large	Very Large	Large	Small
R_{o}	0	Large	Very Large	Small	Large
A_{V}	∞	Moderate	Small	~ 1	Moderate
f_{H}	∞	Small	Moderate	Large	Large

Need for Multistage Amplifiers

- Typical spec for a general purpose operational amplifier
- Input resistance $\sim 1 \mathrm{M} \Omega$
- Output resistance $\sim 100 \Omega$
- Voltage gain $\mathbf{\sim} 100,000$
- No single transistor amplifier can satisfy the spec
- Cascading multiple stages of amplifiers to meet the spec
- Usually
- An input stage to provide required input resistance
- A middle stage(s) to provide gain
- An output stage to provide required output resistance
- It is important to note that the input resistance of the follow -on stage becomes the load of the previous stage

A 3-Stage ac-coupled Amplifier Circuit

- MOSFET M_{1} operating in the C-S configuration provides high input resistance and moderate voltage gain.
- BJT Q_{2} in a C-E configuration, the second stage, provides high gain.
- BJT Q_{3}, an emitter-follower gives low output resistance and buffers the high gain stage from the relatively low value of load resistance.

A 3-Stage ac-coupled Amplifier Circuit

- Input and output of overall amplifier is ac-coupled through capacitors C_{1} and C_{6}.
- Bypass capacitors C_{2} and C_{4} are used to get maximum voltage gain from the two inverting amplifiers.
- Interstage coupling capacitors C_{3} and C_{5} transfer ac signals between amplifiers but provide isolation at dc and prevent Q-points of the transistors from being affected.
- In the ac equivalent circuit, bias resistors are replaced by $R_{B 2}=R_{1} \| R_{2}$ and $R_{B 3}=R_{3} \| R_{4}$

dc Equivalent Circuit

At dc, the capacitors isolate each individual transistor stage from the others. Thus, the bias point for each transistor may be found using the single transistor analysis methods already discussed.

Transistor Parameters
$\mathrm{M}_{1}: K_{n}=10 \mathrm{~mA} / V^{2}, V_{T N}=-2 \mathrm{~V}, \lambda=0.02 \mathrm{~V}^{-1}$
$Q_{2}: \beta_{F}=150, V_{A}=80 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$
$Q_{3}: \beta_{F}=80, V_{A}=60 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$

Q-Points
$\mathrm{M}_{1}:(5.00 \mathrm{~mA}, 10.9 \mathrm{~V})$
$Q_{2}:(1.57 \mathrm{~mA}, 5.09 \mathrm{~V})$
$Q_{3}:(1.99 \mathrm{~mA}, 8.36 \mathrm{~V})$

Small-Signal Parameters
$\mathrm{M}_{1}: g_{m \mathrm{l}}=10.0 \mathrm{mS}, r_{o l}=12.2 \mathrm{k} \Omega$
$\mathrm{Q}_{2}: g_{m 2}=62.8 m S, r_{\pi 2}=2.39 \mathrm{k} \Omega$,

$$
r_{o 2}=54.2 \mathrm{k} \Omega
$$

$\mathrm{Q}_{3}: g_{m 3}=79.6 \mathrm{mS}, r_{\pi 3}=1.00 \mathrm{k} \Omega$,

$$
r_{o 3}=34.4 \mathrm{k} \Omega
$$

ac and Small-Signal Equivalent Circuits

Cal

Input Resistance and Voltage Gain

Output Resistance

Current and Power Gain

The input signal current delivered to the amplifier from source v_{i} is

$$
i_{i}=\frac{v_{i}}{R_{I}+R_{i n}}=9.90 \times 10^{-7} v_{i} \quad \text { Voltage Gain: } \quad A_{v}=\frac{v_{o}}{v_{i}}=9.98 \times 10^{2}(60 \mathrm{~dB})
$$

and the signal current delivered to the load resistor is

$$
i_{o}^{o}=\frac{v_{o}}{R_{L}}=\frac{A_{v} v_{i}}{250 \Omega}=\frac{998 v_{i}}{250 \Omega}=3.99 v_{i}
$$

Power Gain: $\quad A_{P}=\frac{P_{o}}{P_{i}}=\left|\frac{v_{o} i_{o}}{v_{i} i_{i}}\right|=A_{v} A_{i}=4.02 \times 10^{9}(96 \mathrm{~dB})$

SPICE Simulation Circuit

SPICE Simulation Results

SPICE Simulation Results

SPICE Simulation Results

Distorted output with amplitude exceeding output voltage capability of amplifier.

Short-Circuit Time Constant Estimate for \boldsymbol{f}_{L}

An estimate for the lower cutoff frequency for an amplifier with multiple coupling and bypass capacitors is given by the sum of the reciprocals of the "short-circuit" time constants:

$$
f_{L} \cong \frac{1}{2 \pi} \sum_{i=1}^{n} \frac{1}{R_{i S} C_{i}}
$$

where $R_{i S}$ is the resistance at the terminals of the i th capacitor with all the other capacitors shorted.

Short-Circuit Time Constant Estimate for f_{L}

$$
\begin{aligned}
f_{L} \cong \frac{1}{2 \pi}[& \frac{1}{1.01 M \Omega(22 \mu F)}+\frac{1}{66.7 \Omega(22 \mu F)}+\frac{1}{2.72 k \Omega(22 \mu F)}+\frac{1}{19.2 \Omega(22 \mu F)} \\
& \left.+\frac{1}{18.9 k \Omega(22 \mu F)}+\frac{1}{315 \Omega(22 \mu F)}\right]=511 \mathrm{~Hz}
\end{aligned}
$$

